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Abstract

This paper provides several mathematical analyses of the diffusion model in machine learn-
ing. The drift term of the backward sampling process is represented as a conditional expec-
tation involving the data distribution and the forward diffusion. The training process aims
to find such a drift function by minimizing the mean-squared residue related to the condi-
tional expectation. Using small-time approximations of the Green’s function of the forward
diffusion, we show that the analytical mean drift function in DDPM and the score function
in SGM asymptotically blow up in the final stages of the sampling process for singular data
distributions such as those concentrated on lower-dimensional manifolds, and is therefore
difficult to approximate by a network. To overcome this difficulty, we derive a new target
function and associated loss, which remains bounded even for singular data distributions.
We validate the theoretical findings with several numerical examples.

1 Introduction

The field of generative models has emerged as a powerful tool for building probabilistic models and generating
new samples from a given dataset. By accounting for the joint distribution of observable and target variables,
these models offer a flexible and efficient way to analyze complex data. Generative models have been applied
across a wide range of disciplines, including computer vision (Elasri et al., 2022), speech signal processing
(Wali et al., 2022), natural language processing (Iqbal & Qureshi, 2022), and natural sciences (Strokach &
Kim, 2022). Recent advances in generative models, including the popular variational autoencoder (VAE)
(Kingma & Welling, 2014), generative adversarial network (GAN) (Goodfellow et al., 2014), flow-based
model(Papamakarios et al., 2021), and DeepParticle model (Wang et al., 2022), have demonstrated their
ability to solve diverse problems across different domains. These models share a common feature: they use
neural network approximation to map an easy-to-sample distribution to an unknown distribution driven by
data.

In contrast to these direct constructions, another type of generative model links distributions through one-
parameter continuous deformations. This approach has a long history in the mathematical literature and
involves solving the Langevin equation for sufficiently long times, starting from any distribution, to generate
a standard normal distribution. For some distributions pdata, one may find a pair of functions (v, D) such
that the Fokker-Planck equation,

ρt = −∇ · (vρ) + ∇ · (∇(Dρ)) (t, x) ∈ [0, 1] × Rd, (1)

continuously deforms the easy-to-sample distribution p0 = ρ(0, ·) to pdata = ρ(1, ·). Sampling from X0 ∼ p0
and solving the SDE in [0, 1],

dXt = v(t, Xt)dt +
√

2D(t, Xt)dWt, (2)

we can generate pdata by realization of X1. A number of constructive approaches to (v, D) have been
considered in the literature, e.g. Song & Ermon (2019); Block et al. (2020); Wang et al. (2021). A celebrated
one is the MCMC sampler, which samples from pdata = 1

Z exp(−V (x)) with V typically arising from a log-
likelihood function (Parisi, 1981). Then, starting from any reasonable initial distribution, pdata is generated
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by solving Eq. (2) with (v, D) = (−∇V, I) over long times. Another example is the neural ordinary
differential equation (NeuralODE) (Chen et al., 2018) which finds a pair (v, D) from data without a closed-
form representation of V . This continuous-time flow-based model connects the base distribution and the
data distribution using an ordinary differential equation.

All the models mentioned above create a transformation between a base distribution and the data distribu-
tion. Once a model of (v, D) is derived either analytically or from data, the stochastic differential equation
(SDE) integrator can be used to numerically solve the SDE from initial to terminal time, thereby interpreting
it as a generative model.

The diffusion model is a novel probabilistic generative model that converts white noise into a desired data
distribution by learning an implicit transformation (Austin et al., 2021). Inspired by non-equilibrium ther-
modynamics (Sohl-Dickstein et al., 2015), Ho et al. (2020) proposed denoising diffusion probabilistic models
(DDPMs), a class of latent variable models, as an early diffusion model. Later, Song et al. (2021) unified
several earlier models through the lens of stochastic differential equations and proposed score-based genera-
tive models (SGMs). The backward process (generation of new samples) can be interpreted as solving Eq.
(2) with a tweak that reverts the notation of time and the initial distribution after the tweak is assumed to
be a standard normal distribution. Inspired by Anderson (1982), Song et al. (2021) proposed a specific set of
(v, D) from the related Fokker-Planck equation and derived a loss functional based on the forward process.
(Luo, 2022) and (Yang et al., 2022) provide literature reviews from different perspectives.

Despite its success, the sampling process for diffusion models is extremely slow and the computational cost is
high. In DDPMs (Ho et al., 2020), for instance, 1000 steps are typically needed to generate samples. Several
works have attempted to accelerate the sampling process (Lu et al., 2022a;b; Zhang & Chen, 2022; Salimans
& Ho, 2022; Jolicoeur-Martineau et al., 2021; Zhang et al., 2023). In addition, Zhang & Chen (2022) pointed
out that there were dramatically different performances in terms of discretization error and training error
when they trained the score function of SGM on different datasets. Karras et al. (2022) proposed to learn a
denoiser and showed the relationship between the denoiser and the score function. This denoiser is similar
to our proposed function CEM (see below) for empirical distributions. However, the asymptotic behavior of
denoiser, as well as one in CEM, is not trivial for general distributions. It was only observed in numerical
experiments while not rigorously proved in theory. Our current work aims to provide a mathematical analysis
for such observations.

Main Contributions of this work: (1) We rigorously characterize the singularity of the score function
when the target distribution is defined on an embedded manifold. This justifies the singularities observed in
numerical experiments in Zhang & Chen (2022), and mentioned in Chen et al. (2023c;a); Lee et al. (2022);
Bortoli (2022); Chen et al. (2023b); Nachmani et al. (2021). (2) We show the proposed parameterization
of score function (CEM) bypass the problem of modeling a singular function and significantly improve the
efficiency of the training process. (3) We configure the CEM, over the training schedule and the weight
normalization, with respect to the asymptotic analysis of the singularities.

Discussion of Related Work Several recent works focus on the theoretical perspective of diffusion mod-
els. (Bortoli et al., 2021) formulate diffusion models as diffusion Schrödinger bridges, and then provide a
convergence result by assuming the score estimate is bounded in L∞. (Lee et al., 2022) prove that SGMs
have a rate of polynomial convergence by assuming the score estimate is bounded in L2 and requiring a
strong regularity assumption on the data distribution, i.e., log-Sobolev inequality. (Chen et al., 2023c) and
(Chen et al., 2023a) relax these assumptions to obtain more general convergence results. However, they still
require that the score function can be estimated well (in the sense of L2).

The works mentioned above assume the score function can be estimated well by a neural network. However,
this estimate will usually fail when dealing with singular data distributions, such as the distribution supported
on a lower-dimensional manifold. (Bortoli, 2022) and (Zhang & Chen, 2022) explore the affect of singular
data distributions, and they realize that the score function blows up as t tends to zero for the singular
data. Observing the blow-up behavior experimentally, the derivation in Bortoli (2022) is based on the
assumed existence of blow-up as t tends to zero. Especially, their theory does not prove such existence.
In contrast, our theory provides mathematically rigorous analyses of asymptotic behavior at the final time,
which includes both sharp upper and lower bound. More precisely, we find that the singular behavior of the
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score function is 1
t , which is a sharper result than Pidstrigach (2022) (they prove that ∥∇ log(pt)∥ ≳ 1√

t
for

the Brownian motion example). Moreover, we notice a parallel work Chen et al. (2023b) which studies the
score approximation under singular data distribution by requiring a linear assumption. In comparison, our
work does not require such an assumption.

From the experimental perspective of diffusion models, DDPM and SGM conduct different weighting function
for training the neural network to estimate the score function. (Karras et al., 2022; Salimans & Ho, 2022) and
(Campbell et al., 2022) propose similar loss functions or training objectives for improving the performance
of diffusion models. Despite these similarities in configurations, we provide a solid theoretical foundation for
these configurations from rigorous mathematical analyses.

2 Background

As a class of probabilistic generative models, diffusion models are used to sample from a d-dimensional target
probability distribution. Given a target distribution pdata and a random variable X0 ∼ pdata, the general
idea of diffusion models is to add noise to X0 step by step such that XT is an easy-to-sample standard
normal distribution. Subsequently, a reverse diffusion process is used to sample from pdata. The generative
task of diffusion models is done by solving an SDE for the form (2) defined backward in time from T to 0.
In general, there is no closed-form expression for the reversion and we usually learn it from available data.

2.1 DDPM

As a main class of diffusion models, DDPMs (Ho et al., 2020) learn a distribution pθ that approximates pdata

as follows. We start with the forward process, denoted by Xk and X0 ∼ pdata. We gradually add Gaussian
noise to the data with a schedule of K steps at β1, . . . , βK :

p(X1:K |X0) :=
K∏

k=1
p(Xk|Xk−1) (3)

and

p(Xk|Xk−1) := N (
√

1 − βkXk−1, βkId). (4)

Denoting αk := 1 − βk and ᾱk :=
k∏

s=1
αs, we may recast it as:

Xk+1 =
√

1 − βkXk +
√

βkϵ,

=
√

αkXk +
√

1 − αkϵ, ϵ ∼ N (0, Id). (5)

A notable property of the forward diffusion process is that

p(Xk|X0) = N (
√

ᾱkX0, (1 − ᾱk)Id), (6)

which implies that the data is converted to a standard Gaussian distribution as ᾱk converges to 0.

For the generative sampling task, we construct a backward process, denoted by X̃0:K , such that ∀k, X̃k

shares the same marginal distribution as Xk. As a starting point, X̃K follows N (0, Id), which is easy to
sample. Then we iteratively find the conditional distribution

pθ(X̃k−1|X̃k) := N (X̃k−1; µθ(X̃k, k), Σθ(X̃k, k)), (7)

where (µθ, Σθ) can be learned from data evolving according to the forward diffusion process (3).

Ho et al. (2020) proposed Σθ(X̃k, k) = βkId and

µθ(X̃k, k) = 1
√

αk

(
X̃k − βk√

1 − ᾱk
ϵθ(X̃k, k)

)
, (8)
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where ϵθ is modeled by a neural network. We then obtain samples from the distribution pθ(X̃k−1|X̃k) by
computing

X̃k−1 = 1
√

αk

(
X̃k − βk√

1 − ᾱk
ϵθ(X̃k, k)

)
+
√

βkÑk, (9)

where Ñk ∼ N (0, Id).

For the reverse diffusion process, Ho et al. (2020) proposed finding the best trainable parameters θ by
optimizing the variational lower bound:

L := Ep[− log pθ(X0:K)
p(X1:K |X0) ]. (10)

They also found a simplified loss function, which improves sample quality:

Lsimple(θ) := Ek,X0,ϵ∥ϵ − ϵθ(
√

ᾱkX0 +
√

1 − ᾱkϵ, k)∥2. (11)

2.2 Score-based generative model (SGM)

DDPM may be viewed as an SGM inferred from discretizations of stochastic differential equations (SDEs)
(Song et al., 2021). The general idea of an SGM is to transform a data distribution into a known base
distribution by means of an SDE, while the reverse-time SDE is used to transform the base distribution back
to the data distribution. The forward process can be written as follows:

dXt = h(Xt, t)dt + g(t)dWt, X0 ∼ pdata, (12)

where Wt is a Brownian motion and XT ∼ pT approximates the standard normal distribution for large value
of time T . The corresponding reverse-time SDE X̃t shares the same marginal distribution as the forward
process Xt and hence gives a pair of (v, D) in Eq. (1) and Eq. (2) modulo the reversing of the direction of
time. It can be written as

dX̃t =
[
h(X̃t, t) − g(t)2∇

X̃t
log pt(X̃t)

]
dt + g(t)dW̃t, (13)

where pt is the solution of the Fokker-Planck equation for the forward SDE (12), see Anderson (1982).
Song et al. (2021) proposed learning the score function ∇X log pt(X) by minimizing the score-matching loss
function:

Et,X0,Xt

[
λ(t)∥Sθ(Xt, t) − ∇Xt

log pt(Xt|X0)∥2
]
, (14)

where Sθ(Xt, t) is a time-dependent score-based model, and λ(t) is a positive weighting function.

2.3 Training and sampling issues for diffusion models

Diffusion models consist of two processes: a forward process and a reverse-time process. The forward process
is used to transform the target distribution into a normal distribution. The forward process is explicitly given
and does not require training. In contrast, the reverse-time process is used to restore the target distribution
from the normal distribution, with coefficients that are not explicitly known and may be approximated by
training.

Training of DDPM seeks θ by minimizing Eq. (11). For SGM, the evaluation of the score function
∇X log pt(X) is not explicit. Song et al. (2021) discuss several approximations including Gaussian tran-
sition kernel pt(Xt|X0) or using sliced score matching. In the next section, we provide an expression (23) as
the loss function arising from the continuous solution of the Fokker-Planck equation.

In addition to the issue of accessibility of ∇X log pt(X), the score function ∇X log pt(X) in Eq. (14) may
be complex and exhibit local structures and singularities, in particular near t = 0. This was pointed out by
Dockhorn et al. (2022); Song et al. (2021); Zhang & Chen (2022), where they proposed experimental ways
to deal with the singularity of the score function ∇X log pt(X).

In the next section, we will elaborate on accessibility and regularity issues from a more mathematical point
of view.
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3 Generative diffusion model from a mathematical perspective

In this section, we first provide a unified framework for DDPM and SGM based on considering the backward-
generating process as an SDE solver. The training schedule is interpreted as the discretization time step of
the SDE solver. By exploring the analytical solution of the Fokker-Planck equation, we represent the score
function as a natural conditional expectation. The training process then aims to find a network-based model
that approximates the conditional expectation by minimizing the mean-squared prediction error function. In
Section 3.2, we theoretically show that for the preceding generative models (SGM, DDPM), the conditional
expectation exhibit singularities at t → 0 under general sub-manifold assumption. The theoretical value of
the model turns to infinity as the backward process approaches the terminal of the schedule. To overcome
this difficulty, we finally propose a new model (CEM) that is bounded by the range of pdata.

Before starting the derivation, we would remark that a few works have proposed similar frameworks as
in Section 2, such as Gong & Li (2021); Song et al. (2021); Dockhorn et al. (2022); Bao et al. (2022);
Bortoli (2022) (about unified time). Meanwhile to address the stability, Karras et al. (2022) proposing to
use a neural network to learn a denoiser (X0 prediction), which is similar to our proposed function CEM
of 3.3 in case of point cloud distributions. While the advantage of proposing such denoiser is only through
experiment in Karras et al. (2022). (Salimans & Ho, 2022) and (Campbell et al., 2022) also propose similar
loss functions or training objectives for improving the performance of diffusion models. In contrast, this
section aims at presenting the theoretical reasoning that conventional models (e.g. DDPM, SGM) will suffer
from instabilities during training for a large class of dataset (data that has locally low dimensional structures)
regardless of configuration; while CEM or similar models avoid such singularities during training process.
Hence we keep the derivation of the framework for completeness and generality of the theoretical results.

3.1 Unifying the time framework in DDPM and SGM

Inspired by SGM, the forward process of diffusion models may be viewed as a discretization of the following
d−dimensional OU process:

dXt = −1
2Xtdt + dWt. (15)

Consider a K partition of the time interval [0, T ], t0 = 0 < t1 < t2 < · · · < tK = T , where tk − tk−1 = ∆tk =
− log(1 − βk) (equivalently βk = 1 − e−∆tk ). Then at time step tk,

Xtk+1 = Xtk
e− ∆tk

2 +
∫ tk+1

tk

e−
tk+1−s

2 dWs

∼ Xtk

√
1 − βk +

√
βkNk, Nk ∼ N (0, Id), (16)

which coincides with the forward diffusion process in the diffusion models literature, e.g., Ho et al. (2020);
Song et al. (2021). Compared to the preceding section, note that αk = e−∆tk , ᾱk = e−tk .

The advantage of the continuous model is twofold. First, we can represent the distribution of Eq. (15) at
time t by Eq. (17)

Xt ∼ X0e− t
2 + (1 − e−t)N, where N ∼ N (0, Id). (17)

Second, we can easily estimate the time necessary to convert the real data distribution to normal distribution.
Empirically, we take the final time T > 10 which leads to the fraction of the initial data in XT to be less
than exp(−5) = 0.0067.

The backward (sampling) process follows the reverse-time SDE (Anderson, 1982),

dX̃t = −(1
2X̃t + ∇X log p(X̃t, t))dt + dW̃t, (18)

where pt is a forward Kolmogorov equation of Eq. (15) with initial data distribution pdata and W̃t is a
standard Brownian motion independent of Wt. Then Xt and X̃t share the same marginal distribution.
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A key observation is that p, the law of the OU process, has an analytical solution (Evans, 2010),

p(X, t) = 1
Z

∫
exp

(
− ∥X − X0e− t

2 ∥2

2(1 − e−t)

)
pdata(X0)dX0, (19)

where Z is a normalizing factor that depends on t and d. The global score function S may then be interpreted
as a conditional expectation, namely,

S(X, t) = −∇X log p(X, t) = −∇Xp(X, t)
p(X, t)

=
1
Z

∫
X−X0e−t/2

1−e−t exp
(

− ∥X−X0e−t/2∥2

2(1−e−t)

)
pdata(X0)dX0,

1
Z

∫
exp

(
− ∥X−X0e−t/2∥2

2(1−e−t)

)
pdata(X0)dX0

=EX0 [Xt − X0e−t/2

1 − e−t
|Xt = X], (20)

where Xt follows the forward process (15). The conditional expectation in (20) can be interpreted as follows.
Starting from X0 following pdata, the forward process solving (15) gives the base distribution Xt. Given the
observation of Xt as X, Xt−X0e−t/2

1−e−t follows a posterior distribution. Taking the expectation of the posterior
gives the analytical expression of S.
Remark 3.1. By standard Markov property, for t′ < t,

S(X, t) = EXt′

[Xt − Xt′e−(t−t′)/2

1 − e−(t−t′) |Xt = X
]
. (21)

Training In general, S(x, t) : Rd × [0, T ] → Rd is a very high dimensional function and hence lacks global
approximation. Leveraging the properties of the conditional expectation for fixed t, S(X, t) is the optimizer
of the following mean-squared prediction error functional,

J(S) = EX0,Xt

∥∥∥Xt − X0e−t/2

1 − e−t
− Sθ(Xt, t)

∥∥∥2
. (22)

By assigning a weight for the t-variable, the training process of Song et al. (2021) is generalized as seeking
a network-represented function Sθ that minimizes,

EX0,N∼N (0,Id),t[
λ(t)

∥∥ N√
1 − e−t

− Sθ(X0e−t/2 +
√

1 − e−tN, t)
∥∥2
]
. (23)

We remark that we use samples of (X0, t, N) for the evaluation of the integral in Eq. (23) and samples of t
do not necessarily follow the same schedule as those of the backward process.

Sampling There is no general closed-form solution for the backward process (18) and so we employ splitting
schemes, {

Xtk+1 = X̃tk+1 − ∆tkSθ(X̃tk+1 , tk+1)
X̃tk

= e∆tk/2Xtk+1 +
√

1 − e−∆tk Ñk

(24)

where Ñk ∼ N (0, Id).
Remark 3.2. The training and sampling process exactly coincides with the aforementioned SGM, i.e.,
learning the score function S(x, t) with L2-norm. It is also related to DDPM as follows. Taking
ϵθ(x, t) =

√
1 − e−tSθ(x, t), the loss functions (23) becomes,∫

t

λ(t)
1 − e−t

EX0,N∼N (0,Id)

∥∥∥N − ϵθ(X0e−t/2 +
√

1 − e−tN, t)
∥∥∥2

dt

≈
∑

k

λ(tk)
1 − ᾱk

EX0,N∼N (0,Id)

∥∥∥N − ϵθ(X0
√

ᾱk +
√

1 − ᾱkN, tk)
∥∥∥2

. (25)
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And the sampling process (24),

X̃tk
=e∆tk/2(X̃tk+1 − ∆tkSθ(X̃tk+1 , tk+1)) +

√
1 − e−∆tk Ñk (26)

= 1
√

αk
(X̃tk+1 − ∆tk√

1 − ᾱk
ϵθ(X̃tk+1 , tk+1)) +

√
βkÑk

≈ 1
√

αk
(X̃tk+1 − 1 − αk√

1 − ᾱk
ϵθ(X̃tk+1 , tk+1)) +

√
βkÑk. (27)

For the approximation in the last line, we use 1 − αk = βk ≈ ∆tk. This scheme coincides with DDPM using
Lsimple loss function Eq. (11).

3.2 Singularity of the score function

In the previous subsection, we showed the conventional training process aimed to approximate the conditional
expectation function S(X, t) = EX0 [ Xt−X0e−t/2

1−e−t |Xt = X] or ϵ(X, t) =
√

1 − e−tS(X, t). However, such
functions potentially exhibit singularities near t = 0, which corresponds to the last few steps of the sampling
process. For example, if X0 follows a single point distribution, then S(X, t) = X−X0e−t/2

1−e−t while ϵ(X, t) =
X−X0e−t/2√

1−e−t
. It is then very difficult for general network propagation configurations to express such a blow-up

as t → 0.

An n-dimensional sub-manifold is denoted by Ω, where Ω ⊂ Rd and n < d. To characterize such asymptotics
for most general datasets, we made the following assumptions over point X in the backward (sampling)
process and data distribution pdata.

(H1) Uniqueness Assumption Fixing point X, we denote the yX on Ω as the unique point that minimize
the distant between X and Ω, i.e. yX = arg miny∈Ω ∥y − X∥ is uniquely defined.

(H2) Subspace Assumption Let Bε = {y ∈ Ω : ∥y − X∥ < ∥yX − X∥ + ε}, which is decreasing set series
as ε → 0. We assume there exists 0 < ε0 ≪ 1, such that for y ∈ Bε0 , there exists a local coordinate chart,
z → y(z) ∈ Bε0 ⊂ Ω, under which pdata is assumed to have a locally defined smooth density function in form
of,

pdata(y) = ρ̂(z)|J(z)|δy(z)∈Ω, (28)

where J is the Jacobian of local coordinate transformation and the size of J is corresponding to the dimension
of low-dimensional variable z, denoted as n. In addition, we assume within y(z) ∈ Bε0 , ρ̂(z) is continuous
and bounded,

0 < ρ0 ≤ ρ̂(z)|J(z)| ≤ ρ1 < ∞. (29)

Under these assumptions, we state the first key theorem of this work as follows.
Theorem 3.3. (Singularity of the score functions) Let X ∈ Rd\Ω and data distribution pdata satisfy (H1)
and (H2). Then, the score function S(X, t) blows up as t → 0, and more precisely, satisfies

S(X, t) = X − yX

t

(
1 + o(1)

)
. (30)

Proof. The score function has the following representation

S(X, t) = EX0 [Xt − X0e− t
2

1 − e−t
|Xt = X] = g(X, t)

1 − e−t
, (31)

g(X, t) = EX0 [X − X0e− t
2 |Xt = X] =

∫
Ω(X − ye− t

2 )e− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy∫
Ω e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy

(32)
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With a fixed ε > 0, we decompose g into two parts,

g(X, t) =
∫

Bε
(X − ye− t

2 )e− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy∫
Ω e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy

+

∫
Ω\Bε

(X − ye− t
2 )e− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy∫
Ω e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy

. (33)

By definition of Bε, for y ∈ Ω\Bε,

∥X − ye− t
2 ∥ ≥ e− t

2 ∥X − y∥ − (1 − e− t
2 )∥X∥ ≥ e− t

2 (∥X − yX∥ + ϵ) − (1 − e− t
2 )∥X∥ =: Ct,ε. (34)

For y ∈ Bε,

∥X − ye− t
2 ∥ ≤ e− t

2 ∥X − y∥ + (1 − e− t
2 )∥X∥ ≤ e− t

2 (∥X − yX∥ + ϵ) + (1 − e− t
2 )∥X∥ =: Dt,ε. (35)

We claim that the second term of (33) converges to zero as t → 0 (with fixed ε) since

∥∥∥∥∥
∫

Ω\Bε
(X − ye− t

2 )e− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy∫
Ω e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy

∥∥∥∥∥ ≤

∫
Ω\Bε

(∥X∥ + ∥y∥)e−
C2

t,ϵ

2(1−e−t) pdata(y)dy∫
Ω e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy

(36)

≤
∫

Ω(∥X∥ + ∥y∥)pdata(y)dy

∫
Ω e

−
∥X−ye

− t
2 ∥2−C2

t,ϵ

2(1−e−t) pdata(y)dy

. (37)

Given the boundedness of the expectation of the data distribution pdata, it remains to show the denominator
converges to infinity as t → 0. In fact, with (35) in mind,

∫
Ω

e
−

∥X−ye
− t

2 ∥2−C2
t,ϵ

2(1−e−t) pdata(y)dy ≥
∫

Bε′

e
−

∥X−ye
− t

2 ∥2−C2
t,ϵ

2(1−e−t) pdata(y)dy ≥
∫

y(z)∈Bε′

e
−

D2
t,ε′ −C2

t,ε

2(1−e−t) ρ̂(z)|J(z)|dz.

(38)

With t sufficient small, say t < t0 such that ε
2 > 2(e

t0
2 − 1)∥X∥, we set ε′ = ε

2 − 2(e
t0
2 − 1)∥X∥ > 0 so that

∀ 0 < t < t0,

C2
t,ε − D2

t,ε′ =
(

e− t
2 (ε − ε′) − 2(1 − e− t

2 )∥X∥
)

e− t
2 (2∥X − yX∥ + ε + ε′) (39)

=
(

e− t
2
(ε

2 + 2(e
t0
2 − 1)∥X∥

)
− 2(1 − e− t

2 )∥X∥

)
e− t

2 (2∥X − yX∥ + ε + ε′) (40)

=
(

e− t
2

ε

2 + 2(e
t0−t

2 − 1)∥X∥
)

e− t
2 (2∥X − yX∥ + ε + ε′) (41)

≥e−t0ε∥X − yX∥ > 0. (42)

The right-hand side of (38) converges to infinity as t → 0.

Similarly,

∫
Ω\Bε

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy∫
Bε

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy

≤

∫
Ω\Bε

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy∫
Bε′

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy

(43)

≤

∫
Ω\Bε

e
−

C2
t,ε

2(1−e−t) pdata(y)dy∫
Bε′

e
−

D2
t,ε′

2(1−e−t) pdata(y)dy

≤ 1∫
y(z)∈Bε′

e
−

D2
t,ε′ −C2

t,ε

2(1−e−t) ρ̂(z)|J(z)|dz

= o(t) (44)

8
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So the denominator in the first term of (33) can also be decomposed and approximated by the contribution
in Bε ∫

Ω
e

− ∥X−ye
− t

2 ∥2

2(1−e−t) pdata(y)dy = (1 + o(t))
∫

Bε

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy. (45)

Then when t → 0, we have in local coordinates (28),

∫
Bε

(X − ye− t
2 )e− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy∫
Bε

e
− ∥X−ye

− t
2 ∥2

2(1−e−t) pdata(y)dy

(46)

=

∫
y(z)∈Bε

(X − y(z)e− t
2 )e− ∥X−y(z)e

− t
2 ∥2

2(1−e−t) ρ̂(z)|J(z)|dz∫
y(z)∈Bε

e
− ∥X−y(z)e

− t
2 ∥2

2(1−e−t) ρ̂(z)|J(z)|dz

(47)

=X − e− t
2

∫
y(z)∈Bε

y(z)e− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) ρ̂(z)|J(z)|dz∫
y(z)∈Bε

e
− ∥X−y(z)e

− t
2 ∥2

2(1−e−t) ρ̂(z)|J(z)|dz

(48)

Taking (29) into account, and realizing that y(z)e− t
2 is well approximated by yX on Bϵ for t small,

∥∥∥∥∥
∫

y(z)∈Bε
y(z)e− ∥X−y(z)e

− t
2 ∥2

2(1−e−t) ρ̂t(z)|J(z)|dz∫
y(z)∈Bε

e
− ∥X−y(z)e

− t
2 ∥2

2(1−e−t) ρ̂t(z)|J(z)|dz

− yX

∥∥∥∥∥ (49)

≤
ρ1
∫

y(z)∈Bε
∥y(z) − yX∥e

− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) dz

ρ0
∫

y(z)∈Bε
e

− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) dz

(50)

≤
ρ1
∫

y(z)∈Bε
εe

− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) dz

ρ0
∫

y(z)∈Bε
e

− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) dz

(51)

≤ερ1

ρ0
(52)

Substituting back to (48) then (32) we have

lim
t→0

g(X, t) = X − yX + O(ε). (53)

Since choice of ε > 0 is arbitrary, from (31) we have,

lim
t→0

tS(X, t) = lim
t→0

t(X − yX)
1 − e−t

= X − yX . (54)

Remark 3.4. The above derivation may be generalized as an application of the Laplace method, which
we now briefly present. The manifold Ω is covered by charts mapping subsets to domains of Euclidean
space. Consider one such chart parameterized by variables y = y(z) with z ∈ U ⊂ Rn and Jacobian of the
transformation equals 1 to simplify. We assume that the closest point yX = yX(zX) for zX ∈ U .

9
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The Laplace method (see, e.g., Erdélyi (1956)) states that an integral of the form∫
U

e− 1
t θ(z)h(z)dz (55)

is approximated by,

(2πt) n
2

h(z0)
|Hθ(z0)| 1

2
e− 1

t θ(z0)(1 + o(1)) (56)

where z0 is the unique point minimizing θ(z) and |Hθ(z0)| is the determinant of the positive definite Hessian
of θ at z0.

We start with,

S(X, t) =
∫

U
(X − y(z)e− t

2 )e− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) ρ̂(z)dz

(1 − e−t)
∫

U
e

− ∥X−y(z)e
− t

2 ∥2

2(1−e−t) ρ̂(z)dz

. (57)

By noticing 1 − e−t ≈ t when t → 0 and applying the Laplace method (55) to the nominator and denom-
inator with θ(z) = ∥X − y(z)e− t

2 ∥2/2 and h(z) = (X − y(z)e− t
2 )ρ̂(z) and h(z) = ρ̂(z) correspondingly, we

immediately arrive at,

S(X, t) = X − yX

t
(1 + o(1)). (58)

Remark 3.5. The uniqueness assumptions of Theorem 3.3 hold almost surely during the backward process.
This is due to during the backward process, the target function (e.g. S and ϵ) is evaluated on an approximated
distribution of the forward process, which is globally supported over Rd and hence almost surely outside of
Ω. As for the subspace assumption, It is a widely shared belief that data distribution in, e.g., human genes,
climate patterns, and images, are supported on low dimensional structures (Tenenbaum et al., 2000; Roweis
& Saul, 2000; Belkin & Niyogi, 2003). We would like to further remark that the dimension n in the subspace
assumption is only locally defined and our result holds as long as n < d.

In contrast to the above result, there are situations where the target functions (ϵ and S) remain bounded as
t approaches zero for specific distributions pdata.
Theorem 3.6. (Regularity of the score function) Assuming the data distribution X0 has the following form
of probability density function,

ρ = ρ0 ∗ µ1, (59)

where ρ0 is some positive PDF and µ1 is PDF of normal distribution with variance σ2 > 0. Then fixing X,

−∇X log p(X, t) = EX̂0

[ Xt − e−t/2X̂0

σ2e−t + 1 − e−t
|Xt = X

]
, (60)

where X̂0 follows distribution whose PDF is ρ0. The score function −∇X log p(X, t) remains bounded when
the support of ρ0 is compact.

Proof. Let N1 and N2 be independent standard normal distribution with variance σ2 and 1 − e−t corre-
spondingly. Denoting X̂0 as a random variable with distribution ρ0 and X0 is also a random variable with
distribution ρ. Notice that ρ = ρ0 ∗ µ1, where µ1 is PDF of N1. Therefore, we know that X0 = X̂0 + N1.
Moreover, the solution of forward process (15) is Xt = X0e− t

2 +
√

1 − e−tN , where N is a standard normal
random variable. Subsequently, the equation Xt = (X̂0 + N1e− t

2 ) + N2 is hold in distribution sense. Using
this relation, we can derive

10
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E[e−t/2X0|Xt = X]
=E[e−t/2(X̂0 + N1)|e−t/2(X̂0 + N1) + N2 = X]
=E[e−t/2X̂0|e−t/2(X̂0 + N1) + N2 = X] + E[E[e−t/2N1|e−t/2N1 + N2 = X − e−t/2X̂0, X̂0]]

=E[e−t/2X̂0|e−t/2(X̂0 + N1) + N2 = X] + E[σ
2e−t(X − e−t/2X̂0)
σ2e−t + 1 − e−t

|e−t/2(X̂0 + N1) + N2 = X]

=E[σ
2e−tX + (1 − e−t)e−t/2X̂0)

σ2e−t + 1 − e−t
|e−t/2(X̂0 + N1) + N2 = X]. (61)

So

−∇X log p(X, t) = EX0 [Xt − X0e−t/2

1 − e−t
|Xt = X]

= EX̂0
[ Xt − e−t/2X̂0

σ2e−t + 1 − e−t
|Xt = X], (62)

which remain bounded when the support of ρ0 is compact.

Theorem 3.6 provides a possible explanation for why samples of the DDPM and SGM seem to be randomly
perturbed away from the possible local support of the data distribution manifold. As discussed in Theorem
3.3, the theoretical value of the target function becomes unbounded as t approaches 0, which is not expressible
by most network configurations. And the loss function that relies on the target function becomes unbounded
too. The model turns out to learn a bounded function instead of a singular function, which corresponds to
learning a polluted data distribution ρ instead of ρ0 (pdata). A sample from ρ = ρ0 ∗ µ1 can be viewed as
adding independent Gaussian noise to a sample from the original distribution pdata.

Summarizing the above, forcing the network, upper bounded by 1
σ2 , to learn the model S or ϵ from data

supported on a low-dimensional geometry, turns out to add i.i.d. Gaussian noise in each dimension with
variance σ2 to the original data.

3.3 A new model based on conditional expectation

To avoid such pollution, we propose the conditional expectation model (CEM) to respect the singularities.
Note that,

S(X, t) = X

1 − e−t
− e−t/2

1 − e−t
EX0 [X0|Xt = X]. (63)

Denoting EX0 [X0|Xt = X] as f(X, t), we know for fixed t that f(·, t) minimizes the following functional,

J(f) = EX0(∥X0 − f(Xt, t)∥)2. (64)

This justifies defining a new loss function for training fθ as

EX0,Xt,t

[
λ(t)

∥∥X0 − fθ(Xt, t)
∥∥2
]
, (65)

where λ(t) > 0 is a time-dependent weighing function that remains free for the user to choose.
Remark 3.7. A good choice of λ is to align the training process for each t. While the analytical value is
inaccessible without knowledge of data distribution, in practice, we employ λ(t) = (et −1)−1. This is inspired
by an analysis of Lsimple in DDPM discussed as follows. In DDPM, the optimal

ϵθ(X, t) = E[Xt − X0e−t/2
√

1 − e−t
|Xt = X]. (66)

11
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Fixing t, the penalty function is lower bounded, i.e.,

EXt
(ϵθ(Xt, t) − Xt − X0e−t/2

√
1 − e−t

)2 ≥ EXt
V ar[Xt − X0e−t/2

√
1 − e−t

|Xt], (67)

where the equality holds when (66) holds. Note that

V ar[Xt − X0e−t/2
√

1 − e−t
|Xt] = e−t

1 − e−t
V ar(X0|Xt). (68)

The uniform weight in Lsimple implies lower bound in the right-hand side of Eq. (67) is assumed to be
independent of t. With the same assumption, we have

EXt
V ar(X0|Xt) ∝ (et − 1), (69)

which in turn gives λ(t) = (et − 1)−1.

Sampling process After training for fθ, the closed form solution of the backward process (18) remains
unknown. Thus, we still need to use numerical SDE solvers to construct a generative model of pdata. Using
(63), we consider the following replacement in the sampling scheme (24),

Sθ(X, t) = X

1 − e−t
− e−t/2

1 − e−t
fθ(X, t). (70)

Even after re-directing the network to model a bounded function f , the drift term in the backward process,
− 1

2 X − ∇X log p(X, t), may still be of order O( 1
t ) near t = 0; see (30). The training schedule should be

adapted accordingly. A natural choice is to match the drift scale with a single time step. At the time tk for
k > 1, we consider the scale of changes due to the drift,

(tk − tk−1) 1
tk

:= γk. (71)

Minimizing γk for all k > 1, we arrive at the following exponential schedule,

tk = t1(1 − γ)1−k (72)

where γ = 1 − ( T
t1

)
1

K−1 .
Remark 3.8. Though the scale of drift indicated in Eq. (30), i.e., O( 1

1−e−t ), only applies when t is near 0.
For t ≫ 0, we still use exponential schedule (72) to reduce the time of network evaluation.

4 Experiments

The experiments consist of five parts. First, we employ DDPM, SGM, and the proposed CEM to learn to
generate a one-dimensional supported distribution in R2. By comparing the learned models with the corre-
sponding analytic values, we show the new model outperforms DDPM and SGM by avoiding approximating
singularities. Second, we also verify that if we replace the network with its corresponding analytic expression,
the sampling process gives the exact distribution. Third, we investigate the performance of the new model
depending on some parameters that are decided empirically. Fourth, we apply CEM to a high-dimensional
example, i.e., the MNIST dataset, and compare the performance with DDPM. Lastly, we conduct ablation
studies for the sampling schedule and the weighting function.

In all subsequent experiments, unless otherwise specified, we setup the diffusion model with T = 10 as
the ‘final’ time and K = 200 uniform/non-uniform time grid points (exponential schedule (72)) for train-
ing/sampling. For model training, we use 106 samples with a batch size of 104, and we choose Adam as the
optimizer, where the learning rate is 0.001. The network configuration will be specified in each example.

12
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4.1 Comparison between SGM, DDPM and proposed CEM

In the following, we compare the SGM, DDPM, and CEM on several two-dimensional target distributions.

Line normal distribution in 2d space As the first example, we consider a distribution supported on
a line in two-dimensional space. Precisely, the data distribution is generated by X = (X1, X2), where
X1 ∼ N (0, 1), X2 = 0. In Appendix A.2, we derive the explicit formulas:

S(X, t) = (X1, X2
1−e−t ),

ϵ(X, t) = (
√

1 − e−tX1, X2√
1−e−t

),

f(X, t) = (X1e− t
2 , 0).

(73)

Figure 1: 1d line normal distribution in 2d space. From left to right: CEM, SGM, DDPM, and the ground
truth. The network configuration is as follows: 2 hidden layers, each layer with 16 nodes, and Tanh as the
activation function.

In Figure 1, we compare the distributions generated after training the CEM, SGM and DDPM. Our method
CEM displays less pollution errors compared to DDPM and SGM. To verify that the errors originate from the
poor approximation of the goal functions, we compare in Figure 2 the estimated score function Sθ(X, t) with
the ground truth S(X, t) at a fixed point Xeva = (1, −0.1), i.e., e(S(Xeva, t), Sθ(Xeva, t)) = ∥S(Xeva, t) −
Sθ(Xeva, t)∥. We similarly define e(ϵ(Xeva, t), ϵθ(Xeva, t)) and e(f(Xeva, t), fθ(Xeva, t)). Notice that Xeva

is outside of the support of the distribution R × {0} and that by (73), the target score functions S and ϵ
exhibit singularities in the second coordinate. Correspondingly, in the left of Figure 2, we observe that the
approximations of f , S, and ϵ are roughly correct for the first coordinate. This also verifies that the training
of SGM and DDPM is indeed modeling the conditional expectation suggested in Eq. (20). On the right
picture of Figure 2, we observe that, due to the existence of singularities, the approximations of S and ϵ are
incorrect and the error grows rapidly in the final steps of the sampling procedure.

Figure 3 displays the L2-error between the analytic formulas in (73) and the estimated functions f , S and
ϵ obtained during the last 100 sampling steps in the backward process. The L2 norm is defined as follows.
With Sθ(X, t) the estimated score function, the L2-error at a fixed time t > 0 is defined by

ep(S, Sθ) =
∫

∥S(X, t) − Sθ(X, t)∥2p(X, t)dX, (74)

where p(X, t) is distribution of the forward process (15). In practice, we solve the forward process (15) to
obtain the empirical distribution at time t as an approximation of distribution p. We similarly evaluate
ep(ϵ, ϵθ) and ep(f, fθ).

Since ϵ =
√

1 − e−tS is of order O( 1√
t
), we remark that with same configuration of network, ϵ in DDPM

is better approximated than S in SGM (see Figure 2 and Figure 3). This results in less pollution in the
sampling process, as shown in Figure 1.
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Figure 2: Error at a fixed point Xeva = (1, −0.1). Red, proposed CEM: e(f, fθ); Green, SGM: e(S, Sθ);
Blue, DDPM: e(ϵ, ϵθ). (Left) first component of estimated function. (Right) second component of estimated
function.
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Figure 3: L2-error with distribution p. Red, proposed CEM: ep(f, fθ); Green, SGM: ep(S, Sθ); Blue, DDPM:
ep(ϵ, ϵθ). (Left) the first component of the model function. (Right) the second component of the model
function.

Curve distribution We now consider distributions with more complex geometries, and in particular a
data distribution generated by X = (Ucos(U), Usin(U)) where U ∼ Unif[1, 13]. In Figure 4, we compare the
distributions generated by the CEM, SGM, and DDPM. The singularities near t = 0 exhibited in Theorem
3.3 imply that errors only accumulate during the final few stages of the sampling process. The approximated
stochastic dynamics primarily lead Xt to a local neighborhood of the support of pdata, where most of the
error is concentrated.

4.2 Replacing the network by analytical expressions

In a limited number of favorable settings, the diffusion coefficients (v, D) that appear in the backward
sampling process may be computed explicitly leading to an equally explicit expression for the conditional
expectation (20). This bypasses the need to model (v, D) by a neural network.
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Figure 4: Curve distribution. From left to right: the proposed CEM, SGM, DDPM, and the ground truth.
The network configuration is as follows: 3 hidden layers, each layer with 64 nodes, and Tanh as the activation
function.

Table 1: Sampling five-point distribution in 2d space with analytic expression. Frequency of each point.

POINTS 1 2 3 4 5

FREQ. 0.2086 0.1924 0.2092 0.1977 0.1921

As an illustrative example, we generate 5 points (randomly) X1:5 and set the target data distribution
pdata =

∑5
i=1 δXi

. We then obtain the following analytical expression derived in Appendix A.3,

E[X0|Xt = X] =

∑5
i=1 X

(i)
0 exp

(
− ∥X−X

(i)
0 e− t

2 ∥2

2(1−e−t)

)
∑5

i=1 exp
(

− ∥X−X
(i)
0 e− t

2 ∥2

2(1−e−t)

) . (75)

Figure 5 displays the backward process for 10000 samples generated by solving the backward SDE at the
times t = 10, 5.8718, 3.2356, 0.7518, 0.0216, 0. Not surprisingly, the initial points sampled from a normal
distribution are entirely “absorbed" into the target five-point distribution at the final sampling step t = 0.
Table 1 counts the empirical frequencies (probability) of absorption by the five target points, which are very
close to their theoretical value 0.2.

The interpretation is then twofold. (1) With an exact model of the target function in the training process and
an exact solution of the SDE (18) in the sampling process, the resulting new samples accurately reproduce
the original training data. This validates that the training process of diffusion model under the framework
discussed in Section 3.1 is in fact a least square minimization which achieves optimal at conditional expecta-
tion equation 20. (2) When explicit expressions such as (75) are not available, this ideal accurate sampling
of the training data can rarely be achieved in practice due to the imperfections in the neural network ap-
proximation. Only a simplified distribution is learned in practice, which enables the generalization abilities.
See Figure 6 and the next section for the reconstructions obtained in the context of a distribution with four
atoms for different neural nets trained to approximate E[X0|Xt = X].

4.3 Dependence on the model configuration

Expressive power of network. In the next example, we consider a point cloud distribution with four
points pdata(x) = δ(1,−3)(x) + δ(1,−1)(x) + δ(1,1)(x) + δ(1,3)(x). The analytical solution for f is similar to that
in (75). In Figure 6, we show the distribution generated from (24) after training for the CEM with different
network configurations: a deep neural network (2 hidden layers, 16 nodes each layer) and a shallow neural
network (1 hidden layer, 4 nodes each layer). This comparison illustrates that when the approximation power
of the neural network is insufficient, then optimizing (65) only leads to a poorly approximated f and hence
an incorrect resulting sampling.
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Figure 5: Generating Five-point distribution in 2d space by the analytic expression of the drift, scattering
plot of sampling process for t = 10, 5.8718, 3.2356, 0.7518, 0.0216, 0.

We point out that for many practical distributions with bounded support, even though the proposed CEM
target function f is bounded uniformly in t, it may itself be extremely complicated. In practical applications
of diffusion models, the new f in CEM may have different structures compared to ϵ in DDPM and S in SGM
and this may require a design of the network that differs from the well-established U-Net in Ronneberger
et al. (2015). Moreover, if the design of the network preserves the possible low dimensional structure of
continuous data distribution, instead of the discrete samples, solving the backward process associated with
the network modeled drift may generalize the distribution of the discrete sample to the continuous one. We
leave this as future work.
Training schedule t1 Yet another parameter to be determined in the training schedule proposed in Eq.
(72) is t1. In Figure 7, we consider a 20 points distribution in R2 and generate samples from Eq. (24)
with analytical expression for various values of t1. As a splitting scheme, (24) introduces numerical errors
proportional to the time step. Since the final time step is t1, we can see in Figure 7 that smaller t1 results
in lesser errors in the generated distribution. In practice, we do not recommend t1 to be taken as too small
as this introduces numerical instabilities when computing the final drift in (24).

Aligning the training process by designing λ In order to further improve the effectiveness of training,
it is also important to control the variance of the loss function at different times by judicious choices of
λ(t). In section 3.3, we propose to define λ(t) = 1

et−1 and the previous experiments have verified its validity.
Recalling the loss function in CEM (65), we ensure that

λ(t)−1 ∼ EX0,Xt
∥X0 − f(Xt, t)∥2. (76)

For a given explicit expression of f , we can numerically estimate the right-hand side at different times by
sampling the forward process Xt. The estimation is denoted as λtrue(t), as it reflects the potential small t
asymptotic regime of the variance in the right-hand side of (76).
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Figure 6: Four-point distribution. From left to right: Deep neural network, shallow neural network, and
the ground truth. The Deep network configuration: 2 hidden layers, each layer with 16 nodes. The shallow
network configuration: 1 hidden layer, each layer with 4 nodes. Tanh as the activation function of both.

Figure 7: Generated samples with the analytic expression of drift for various t1

In Figure 8, we revisit the case of Section 4.2 with a five-point target distribution pdata. The proposed λ
in Section 3.3 is (et − 1)−1. We consider 1

λguess(t) = C(et − 1) with a free constant C to fit the computed
1

λtrue(t) . It can be seen on Figure 8 that (et − 1)−1 captures the correct scale despite the minor perturbations
introduced by the sampling. This result is another confirmation that our proposed method CEM may greatly
improve training stability in some cases.
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Figure 8: Fitting λ−1. True: EX0,Xt
∥X0 − f(Xt, t)∥2 by Monte Carlo; guess: C(et − 1) for the best constant

C.

4.4 Application to MNIST

In this subsection, we present the performance when applying our CEM to generate high dimensional dis-
tribution (MNIST, 9a). Comparing with previous examples, we replace the densely connected net by Unet
Ronneberger et al. (2015) to model ϵ (66) of DDPM and f of CEM separately. We apply Adam optimizer
with a learning rate of 0.00002 and train each model with a batch size of 64 for 30 epochs. Both the forward
process and the sampling process consist of 1000 steps, with a final time T = 10. Figure 9b and Figure 9c
show that the generation of CEM and DDPM correspondingly. Limited by computing resources, this pre-
liminary numerical result validates the potential sample generation capability of CEM for high dimensional
distributions and shows the advantage of CEM over the original DDPM.

(a) Snapshots of MNIST (b) CEM (c) DDPM

Figure 9: Performance of CEM and DDPM on MNIST

4.5 Ablation Studies

Impact of sampling schedule Theorem 3.3 shows general existence of the singularities during the sam-
pling process. An arbitrary sampling schedule may lead to numerical instabilities during solving reverse time
SDEs. To this end, we take 20 time steps from T = 10 for the sampling process and compare the linear
schedule, quadratic schedule and the proposed exponential schedule (72) in Figure 10. As expected, we can
see that the exponential schedule significantly improves the sampling performance of CEM as a result of
respecting the growth of scale of the drift. As an intermediate between linear and exponential, the quadratic
schedule yields similar results to the exponential schedule, but with slightly inferior performance.
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Figure 10: Comparison of different sampling schedules. From left to right: linear schedule, quadratic
schedule, exponential schedule and ground truth. The network configuration is as follows: 3 hidden layers,
each layer with 64 nodes, and Tanh as the activation function.

Impact of weighting function λ The weighting function λ in (65) is also a major impact factor for the
performance and should be carefully designed for the training in order to normalize the training objective.
We choose three different weighting functions λ(t) = 1, 1

(et−1)2 , 1
et−1 and compare their sampling performance

in Figure 11. We can see that the proposed weighting function λ(t) = 1
et−1 achieves a better sampling result

than the other two functions.

Figure 11: Comparison of different weighting functions. From left to right: constant weighting function,
1

(et−1)2 , 1
et−1 and ground truth. The network configuration is as follows: 3 hidden layers, each layer with 64

nodes, and Tanh as the activation function.
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A Appendix

A.1 Normal distribution

Consider a one-dimensional case. If X0 is a normal distribution N (µ, σ2), the marginal density Eq. (19)
becomes

p(t, X) = 1
Z

√
2πσ

∫
exp
(

− ∥X − X0e− t
2 ∥2

2(1 − e−t)

)
exp
(

− ∥X0 − µ∥2

2σ2

)
dX0

= 1
Z

√
2πσ

∫
e−L(t,X,X0)dX0. (77)

Here the function L(t, X, X0) is denoted by:

L(t, X, X0) := ∥X − X0e− t
2 ∥2

2(1 − e−t) + ∥X0 − µ∥2

2σ2

= σ2∥X − X0e− t
2 ∥2 + ∥X0 − µ∥2(1 − e−t)
2σ2(1 − e−t)

= A(t)∥X0∥2 − B(t, X)X0 + σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t)

= σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t) +

A∥X0 − B
2A ∥2 − B2

4A

2σ2(1 − e−t)

= σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t) − B2

8Aσ2(1 − e−t) +
A∥X0 − B

2A ∥2

2σ2(1 − e−t) , (78)

where the function A(t) = σ2e−t + 1 − e−t and B(t, X) = 2Xσ2e− t
2 + 2µ(1 − e−t). Therefore, we can rewrite

the marginal density (77) as

p(t, X) = 1
Z

√
2πσ

exp
( B2

8Aσ2(1 − e−t) − σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t)

) ∫
exp

(
−

A∥X0 − B
2A ∥2

2σ2(1 − e−t)
)
dX0

= 1√
2πA

exp
( B2

8Aσ2(1 − e−t) − σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t)

)√
A

Zσ

∫
exp

(
−

A∥X0 − B
2A ∥2

2σ2(1 − e−t)
)
dX0

= 1√
2πA

exp
( B2

8Aσ2(1 − e−t) − σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t)

)
. (79)

Subsequently, we have

log p(t, X) = log( 1√
2πA

) + B2

8Aσ2(1 − e−t) − σ2∥X∥2 + µ2(1 − e−t)
2σ2(1 − e−t) . (80)

Substituting A(t) = σ2e−t + 1 − e−t and B(t, X) = 2Xσ2e− t
2 + 2µ(1 − e−t) into (80) yields

∇X log p(t, X) = B∇XB

4Aσ2(1 − e−t) − X

1 − e−t

= 4σ4e−tX + 4µσ2e− t
2 (1 − e−t)

4σ2(1 − e−t)(σ2e−t + 1 − e−t) − X

1 − e−t

=
[ σ2e−t

(1 − e−t)(σ2e−t + 1 − e−t) − 1
1 − e−t

]
X + µe− t

2

σ2e−t + 1 − e−t

= −X + µe− t
2

σ2e−t + (1 − e−t) . (81)

Thus, the function ∇X log p(t, X) is not singular at t = 0. This agrees with ∇X log p(t, X) = −X when
µ = 0 and σ = 1.
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A.2 Distribution supported on a low dimensional manifold

If X0 is a normal distribution N (0, 1) and Y0 is a δ0-distribution, the marginal density in (19) becomes

p(t, X, Y ) = 1
Z

∫ ∫
exp − (X − X0e− t

2 )2 + (Y − Y0e− t
2 )2

2(1 − e−t) ρ(X0, Y0)dX0dY0

= 1
Z

∫ ∫
exp − (X − X0e− t

2 )2 + (Y − Y0e− t
2 )2

2(1 − e−t) ρ(X0)δ0(Y0)dX0dY0

= 1
Z

√
2π

∫
exp − (X − X0e− t

2 )2 + Y 2

2(1 − e−t) e−
X2

0
2 dX0

= 1
Z

√
2π

∫
exp − (X0 − Xe− t

2 )2 + X2 + Y 2 − X2e−t

2(1 − e−t) dX0

=
√

1 − e−t

Z
exp X2e−t − X2 − Y 2

2(1 − e−t) . (82)

Therefore,

log p(t, X, Y ) = log(
√

1 − e−t

Z
) + X2e−t − X2 − Y 2

2(1 − e−t) , (83)

and

∇X log p(t, X, Y ) = −X, (84)

∇Y log p(t, X, Y ) = − Y

1 − e−t
. (85)

A.3 Point cloud distribution

We now derive the analytic expression for E[X0|Xt = X] when X0 is drawn from a point cloud. Suppose
that the number of points is K (denoted by {X

(i)
0 }K

i=1), then

E[X0|Xt = X] =
1
Z

∫
X0 exp

(
− ∥X−X0e−t/2∥2

2(1−e−t)

)
pdata(X0)dX0,

1
Z

∫
exp

(
− ∥X−X0e−t/2∥2

2(1−e−t)

)
pdata(X0)dX0

=

∑K
i=1 X

(i)
0 exp

(
− ∥X−X

(i)
0 e− t

2 ∥2

2(1−e−t)

)
∑K

i=1 exp
(

− ∥X−X
(i)
0 e− t

2 ∥2

2(1−e−t)

) , (86)

where Z is a normalizing factor that depends on t and the dimension of X0.
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